Fuzzy Support Vector Machine based Fall Detection Method for Traumatic Brain Injuries
نویسندگان
چکیده
Falling is a major health issue that can lead to both physical and mental injuries. Detecting falls accurately reduce the severe effects improve quality of life for disabled people. Therefore, it critical develop smart fall detection system. Many approaches have been proposed in wearable-based systems. In these approaches, machine learning techniques conducted provide automatic classification accuracy. One most commonly used algorithms Support Vector Machine (SVM). However, classical SVM neither use prior knowledge process accurate classifications nor solve problems characterized by ambiguity. More specifically, some values are inaccurate similar features normal activities, which also greatly impact performance ability SVMs. Hence, became necessary look an effective method based on combination Fuzzy Logic (FL) so as false positive alarms this paper, various training data assigned corresponding membership degrees. Some points with high chance falling degree membership, yielding contribution decision-making. This does not only achieve detection, but reduces hesitation labeling outcomes improves heuristic transparency SVM. The experimental results achieved 100% specificity precision, overall accuracy 99.96%. Consequently, experiment proved be yielded better than conventional approaches.
منابع مشابه
Acoustic detection of apple mealiness based on support vector machine
Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...
متن کاملRobustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملNetwork Intrusion Detection Model based on Fuzzy Support Vector Machine
Network intrusion detection is of great importance in the research field of information security in computer networks. In this paper, we concentrate on how to automatically detect the network intrusion behavior utilizing fuzzy support vector machine. After analyzing the related works of the proposed paper, we introduce the main characterics of fuzzy support vector machine, and demonstrate its f...
متن کاملDetection of Alzheimer\'s disease based on magnetic resonance imaging of the brain using support vector machine model
Background: Alzheimer's disease (AD) is the most common disorder of dementia, which has not been cured after its occurrence. AD progresses indiscernible, first destroy the structure of the brain and subsequently becomes clinically evident. Therefore, the timely and correct diagnosis of these structural changes in the brain is very important and it can prevent the disease or stop its progress. N...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2022
ISSN: ['2158-107X', '2156-5570']
DOI: https://doi.org/10.14569/ijacsa.2022.0131134